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A higher harmonic resonance with wavenumber ratio of 1 : 3 is found to take place in 
Rayleigh-BBnard convection under rigid-rigid boundary conditions. Bifurcation 
diagrams for two-dimensional motion are obtained for various values of the Prandtl 
number P. It is found that a pure mode and mixed mode solutions exist as nonlinear 
equilibrium states of primary roll solutions for relatively high-Prandtl-number fluids 
(P 2 0.13) while the pure mode, mixed modes, travelling wave and modulated wave 
solutions exist for relatively low-Prandtl-number fluids (P < 0.12). 

1. Introduction 
Pattern selection in the convection in a fluid layer heated from below has been 

investigated extensively by Schliiter, Lortz & Busse (1965), Busse (1967), Clever & 
Busse (1974), and Busse & Clever (1979). They calculated the steady primary roll 
solutions and examined in detail their linear stability to additional two-dimensional 
or three-dimensional disturbances. Their results show that the primary rolls are 
unstable to many types of secondary instabilities such as zigzag, cross-roll, Eckhaus, 
oscillatory, knot, and skewed varicose, which occur depending on the values of the 
parameters. The stability boundaries to these instability modes are collected in one 
diagram called Busse's balloon. All the instabilities predicted were experimentally 
confirmed to occur by Busse & Whitehead (1971). 

For the monochromatic and steady primary roll, the stability boundaries for the 
secondary instabilities are thus well understood now. This is not however the case if 
the primary solutions are neither monochromatic nor steady as we will discuss in a 
later section. The latter situation occurs at high Rayleigh number where multiple 
mode interactions take place. 

The multiple mode interaction in Rayleigh-BBnard convection was investigated 
by Kidachi (1982) and Knobloch & Guckenheimer (1983) where two modes bifurcate 
from the conduction state simultaneously or successively. They analysed the 
nonlinear interaction between two modes of k-rolls and (k+l)-rolls in a finite 
rectangular domain with stress-free boundaries and derived a set of amplitude 
equations, i.e. coupled Landau equations, for the two modes. They found that the 
transition between two sets of rolls occurs through the generation of a mixed mode 
for low Prandtl numbers while it occurs through rather abrupt transition involving 
hysteresis for high Prandtl numbers. It is noted here that the nonlinear interaction 
between the two modes is not a resonant interaction, but an interaction mainly 
through mean field deformation and that the effect of the phase difference does not 
enter there because the derivation of the equations was truncated a t  the cubic order. 
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Busse & Or (1986) obtained a new class of solutions which do not reflect the 
symmetry of the physical conditions. They extended the analysis to a higher-order 
solution, including the effect of the phase difference between the two modes, and 
obtained a new type of mixed mode solution which is distinguished from the one 
obtained by Knobloch & Guckenheimer by a tilt of the convection rolls. The new 
type of mixed mode solution shares with Knobloch & Guckenheimer's one the 
property that it is unstable for large Prandtl numbers and becomes stable for Prandtl 
numbers P < 0.296. 

Armbruster ( 1987) derived fifth-order bifurcation equations as the normal form 
which is equivariant under an action of 0(2)  xZ(2)-symmetry groups. He then 
showed how the different types of solutions of Knobloch & Guckenheimer and of 
Busse & Or arise. He introduced free phases in the interacting modes. He found two 
types of mixed mode solutions and a travelling wave solution as well as the pure 
mode ones. All the interesting new solutions are unfortunately unstable. 

Busse (1987) further extended the work of Busse & Or by focusing attention on the 
effect of a small quadratic dependence of the density on the temperature. This 
situation breaks the spatial symmetry which would be present in the conventional 
treatment of Rayleigh-Be'nard convection with density having linear dependence on 
temperature, so that 1 :2 resonance can take place a t  the quadratic order. He 
obtained coupled amplitude equations and demonstrated how drastically the 
bifurcation characteristics are changed by the resonance mechanism. 

Similar nonlinear interactions between stationary modes have been investigated 
for other fluid flows. Nagata & Busse (1983) and Mizushima & Saito (1988) examined 
the nonlinear stability of free convection in a vertical slot with sidewall heating. 
They showed that the parameter range in which a two-dimensional nonlinear 
equilibrium solution exists differs from a linearly unstable domain. Fujimura & 
&ushima .( 1987) derived the coupled amplitude equations and clarified that this 
rather contradictory phenomenon is due to  nonlinear 1 : 2 resonance. Meyer-Spasche 
& Keller (1985), Li (1986), Specht, Wagner & Meyer-Spasche (1989) also reported the 
1 : 2 resonance for Couette flow between rotating concentric cylinders with different 
speeds. 

Many complicated and interesting nonlinear interactions appeared as the multiple 
bifurcations were analysed in a unified manner by Dangelmayr (1986) and 
Dangelmayr & Armbruster (1986). Under the presence of 0(2)-symmetry, they 
derived the normal forms for two interacting stationary modes with m : n  resonance 
and obtained bifurcation diagrams for various cases, especially for m 2 2 and (m :n) 
= (1 : 2). Their theory assumes only O(2)-symmetry and may be applicable to various 
fluid motions having periodic boundary conditions. 

The objective of the present paper is to investigate the bifurcation of solutions 
with 1 : 3 resonance in Rayleigh-Be'nard convection mainly for the parameter range 
in which Clever & Busse encountered the difficulty in their evaluation of the primary 
roll solutions (see Nagata & Busse for the difficulty). The resonance takes place in the 
Rayleigh-BQnard convection between rigid-rigid boundaries reflecting the symmetry 
of the physical conditions of the convection layer with periodic lateral boundary 
conditions. We will obtain global bifurcation diagrams for a relatively large Prandtl 
number. We will also derive coupled amplitude equations over a wide range of the 
Prandtl number. The equations, a subset of the general form obtained by 
Dangelmayr and Dangelmayr & Armbruster, possess pure mode, mixed mode, 
travelling wave, and modulated travelling wave solutions depending on the value of 
the Prandtl number. The local equations will be shown to well reproduce the global 
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characteristics. We will further discuss the effect of the resonance on the bifurcation 
diagram expressed by Busse's balloon and on the interpretation of the balloon. 

2. Nonlinear equilibrium solution for two-dimensional primary roll 
disturbances 

Suppose that a gap between two horizontal parallel plates at  different temperatures 
is filled with a fluid. We confine ourselves to two-dimensional flows and take a 
Cartesian system of coordinates with x and z as the horizontal and vertical directions 
opposite to the direction of gravity, respectively. Making use of the Boussinesq 
approximation and introducing the stream function * in the (x,z)-plane, the 
governing equations of the stream function $ and deviation T of the temperature 
from heat conduction state are written in a standard non-dimensional form as 

aT -- "" PV4$ + PR - = J (  *, V"), 
at ax 

aT a$ 
-+--V2T = J($,  T ) ,  
at ax 

where R is the Rayleigh number, P is the Prandtl number, J ( f , g )  is the Jacobian 
defined by 

and V 2  is the two-dimensional Laplacian in the (x, 2)-plane defined by 

a 2  a 2  

ax2 a22 
v2 = -+-. 

The boundary conditions for $ and T are written as 

The linear stability of Rayleigh-BQnard convection has been investigated by 
Jeffreys (1928), Pellew & Southwell (1940), and Reid & Harris (1958). It is known 
that the principle of exchange of stability holds for this problem so that the phase 
velocity of a growing disturbance wave, if it exists, is zero. The most unstable 
disturbance has a spatial structure which is symmetric with respect to the midplane 
z = 0. We depict the neutral stability curve in figure 1 by a curve connecting the 
closed circles. The curve on the left-hand side is also the neutral curve but is depicted 
by scaling the wavenumber a by 5 for later reference. Our careful numerical 
calculation reveals that the critical Rayleigh number R, and the critical wavenumber 
a, are given by R, = 1707.762 and a, = 3.1163236. 

To obtain the nonlinear equilibrium solutions of the two-dimensional primary roll, 
we expand $ and T in Fourier series in the x-direction as 

m m 

$ = &einoLz, T = C OneinoLz 
n--m n--m 

(4) 
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a 

FIGURE 1. Neutral stability curve. It is independent of the Prandtl number. The curve on the 
left-hand side is also the neutral stability curve but is depicted by reducing the scale of a by f .  

The $, are pure imaginary and $-n = - $ n  holds, while the 8, are pure real and 
0-, = 8, holds. Equations for the Fourier coefficients $, and 8, are given by 

( 5 )  -- as, 'n PS2, $, $. inaPRf9, = iabq5p S, Dq5, - qD$, S, $,I, 
p+q-n at 

(6) 
-+ a e n  ina$, - S, 8, = C iab$p DO, - qD$p O,], 

p+q=n 

where D = d/dz and S ,  = D2-n2a2. Here we truncated the Fourier expansions at  
n = + N .  We further set a/at  = 0 in order to obtain the steady equilibrium solutions. 
As stated above, the most unstable disturbance on the linear basis has even symmetry 
in the z-direction. Symmetry consideration of the nonlinear terms in ( 5 )  and (6) 
indicates that two modes with the same symmetry induce an antisymmetric mode 
through the nonlinear interaction, whereas two modes with opposite symmetry 
induce a symmetric mode. Let us take an even symmetric disturbance as the 
fundamental mode (n = 1) .  The symmetric odd-order harmonic modes (n = 3,5,. . .) 
and the antisymmetric even-order harmonic modes (n = 2 , 4 , .  . .) can thus constitute 
a subset of the solutions. Although all the solutions which exist in the neighbourhood 
of the criticality are contained in this subset, more general solutions not contained 
in the subset might also be realized far from the criticality. We, however, restrict 
ourselves to the analysis of the subset and assume that the even-order harmonic has 
odd symmetry while the odd-order harmonic has even symmetry in order to compare 
the results shown below with the previous results like the ones by Busse and his 
coworkers. I n  the Appendix, we will violate this assumption by introducing an even 
symmetric second harmonic mode. Under this assumption, we expand $, and 8, in 
Chebyshev polynomials as 

at 

Here T,(2z) is the Chebyshev polynomial of the nth degree, and a,, and b,, vanish if 
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FIQURE 2. Distribution of the nonlinear equilibrium amplitude at z = 0, w1 = iu$l. P = 7.0. 

R 

2000 
2 500 
3000 
5000 

loo00 
20 000 
30 0oO 
50 000 

Nu (Clever & Busse) 

1.214 
1.478 
1.667 
2.112 
2.618 
3.119 
3.440 
3.894 

Nu (Present result) 

1.21292 
1.47502 
1 .66250 
2.10299 
2.60190 
3.10686 
3.420 16 
3.85185 

TABLE 1 .  Comparison of the present results with those of Clever & Busse (1974). 
u, = 3.117, P = 7.0 

both of n and m are odd or even. Substitution of (7) into (5) and (6), assumption 
of a/at = 0, and utilization of the collocation method yield algebraic equations for 
2(N+ 1)  (M+4) real coefficients anm and bwm. The nonlinear equations were solved 
based on the Newton-Raphson method. 

Prior to showing the results of nonlinear equilibrium solutions, let us compare the 
present numerical results with those of Clever & Busse (1974). I n  table 1, we tabulate 
the comparison of the values of the Nusselt number for P = 7.0 (water) a t  critical 
wavenumber a, = 3.117. (Precisely, the more accurate value of a, is 3.1163236, but 
we utilized the former value for the comparison with Clever & Busse’s results.) 
Expansions in Fourier series and Chebyshev polynomials are truncated a t  N = 12 
and M = 30, respectively. Other than the fact that the present results are more 
accurate than Clever & Busse’s, both are almost the same. Our claim that the present 
results are more accurate is because the truncation levels in the present paper, Nand 
M ,  are larger than those taken in Clever & Busse’s paper. 

We show in figure 2 the equilibrium amplitude of the vertical velocity component 
w1 = ia$, a t  z = 0 for the primary roll with P = 7.0. The figure shows that the 
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3A 

8 
a 

FIQURE 3. Comparison of equilibrium amplitudes obtained from two methods on an enlargement 
of figure 2 around a = 0.17 for R = 3000. Solid line: Fourier truncation method, dashed line: 
weakly nonlinear theory. 

equilibrium amplitude is given by a single curve for R = 2000 while the amplitude is 
given by two curves for R 2 3000. Linear stability theory can only predict the 
situation where the equilibrium amplitude is given by a single curve like the one for 
R = 2000. 

The curves for 1.5 < a < 1.8 in figure 2 are enlarged in figure 3 for R = 3000 in 
order to show the detail at  the place where the two curves meet. It is found from the 
figure that three equilibrium solutions co-exist in the neighbourhood of a = 1.7. This 
point has been overlooked in the many previous investigations of Rayleigh-Be'nard 
convection ; that is, secondary instability has been examined for primary roll 
solutions by assuming that the roll solutions uniquely exist in all the linear unstable 
domain. 

3. Local bifurcation analysis 
We obtained the global bifurcation diagrams for two-dimensional primary roll 

solutions in the previous section for relatively large Prandtl number fluids. Local 
bifurcation diagrams for various values of the Prandtl number, on the other hand, 
will be obtained in this section. 

According to the ordinary weakly nonlinear stability theory for a monochromatic 
mode, the temporal evolution of the complex amplitude A ,  for the fundamental 
mode (a = a,) is governed by a Landau equation of the form of 

dA 
dt 
1- - ~ , 4 + A - , , ,  IA1I2A1, 

if the equation is truncated a t  the cubic order. Coefficients involved in (8) are pure 
real for the present problem. This equation guarantees that a growing disturbance 
with A, > 0 approaches the equilibrium amplitude IAJeq = ( -Al/A-lll)~ if A_,,, < 0. 
Near the critical Rayleigh number, (8) holds for a1 x a, without any influence of the 
higher harmonic resonance that is discussed below. The equilibrium amplitude of the 
vertical velocity component a t  z = 0, w1 = a, [Alleq, is calculated for P = 7.0 based 
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R w1 (weakly nonlinear) w1 (Fourier truncation) 

1710 
1720 
1750 
1800 
1900 
2000 
2200 
2400 
2600 
2800 
3000 

0.2 14 244 
0.502383 
0.941 117 
1.40973 
2.08888 
2.63995 
3.587 19 
4.43589 
5.23353 
5.99985 
6.74491 

0.214122 
0.500831 
0.931211 
1.37800 
1.99476 
2.46596 
3.21677 
3.83331 
4.37230 
4.85923 
5.308 12 

TABLE 2. Comparison of the magnitude of w, obtained using weakly nonlinear theory and 
Fourier truncation method. a, = 3.1163236, P = 7.0 

on the amplitude expansion method and is shown in table 2 with numerical results 
based on the Fourier truncation method described in the previous section. Numerical 
values calculated on the basis of (8) are found to be almost correct around the critical 
Rayleigh number, but deviate from the accurate value obtained from the Fourier 
truncation method as the Rayleigh number increases. 

As we described in the previous sections, unstable disturbances in BBnard 
convection have spatial symmetry in the z-direction and two modes with the same 
symmetry induce an antisymmetric mode through the nonlinear interaction, whereas 
two modes with opposite symmetry induce a symmetric mode. So, it is expected that 
the symmetric fundamental mode (a = a,) and the symmetric third harmonic mode 
(a = 3a1) can resonate with each other for particular sets of parameters. Figure 1 
guarantees that the exact resonance occurs between the neutral fundamental mode 
with a = 1.7232445 and R = 2573.739 and its third harmonic. Taking account of the 
effect of this higher harmonic resonance, one can obtain a set of coupled amplitude 
equations using the weakly nonlinear stability theory based on the method of 
multiple scales : 

where A ,  and A ,  are the complex amplitude functions for the fundamental mode with 
a and the third harmonic with 301, respectively. We note here that all the coefficients 
involved in (9) as well as (10) are pure real. The set of equations (9) and (10) is a 
particular example (m : n) = (1 : 3) of the general form obtained by Dangelmayr and 
Dangelmayr & Armbruster. Although the set of coupled amplitude equations is 
derivable from the method of multiple scales based on a small perturbation 
parameter which is a measure of the distance of (a, R) from the exactly resonating set 
(1.7232445,2573.739), we use the amplitude expansion method for the determination 
of the coefficients included in the set of equations (9) and (10) because we aim to 
obtain the equilibrium solutions of (9) and (10) even apart from the exact resonance 
parameter set. The correctness of the amplitude expansion method in the 
neighbourhood of the neutral state was discussed by Fujimura (1989) by making 
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comparison with the method of multiple scales. We will also discuss the results of the 
amplitude expansion method by comparing them with that from the Fourier 
truncation method. We do not describe how all the coefficients are determined based 
on the amplitude expansion method because the expansion procedure is now routine 
(see Fujimura & Mizushima (1987) ,  for example). 

Now set 
A,(t) = a,(t)e'8n(t) (n = i , 3 ) ,  0 = 6,-38,, 

in order to reduce the degree of freedom from 4 to  3 as 

da 
dt 
2- - c , a , + c 2 a ~ + c 3 a , a ~ + c 4 a ~ a 3  cos 0, 

da, = d , a 3 + d 2 a i a 3 + d 3 a ~ + d , a t  cos 0, 
dt 

dO 
- dt = - (d4 at a;, + 3c, a, a3) sin O.  

Equilibrium solutions of the set of equations (11)-(13) are given in Dangelmayr as 
equations (1.14) and (1.15) and can be classified into the following three categories : 
(i) Pure mode solution (P): 

This solution exists if d , d ,  < 0 and is stable if c1 < c3d l /d3 .  The other pure mode 
solution (a, + 0, a3 = 0) is impossible owing to the cubic terms in (9 )  and (10). 
(ii) Mixed mode solution (M):  

a, = 0,  a: = - d l / d 3 .  

a, = ra3, a: = - d , / ( d 2 r 2 + d 3 + d , r 3  cos 0), 

O = m ,  1 2 = 0 , + 1 , + 2  ,..., 

c1d4 COB 0 r 3 + ( ~ , d 2 - c 2 d l ) r 2 - d 1 c 4  cos O r + ( c l d 3 - c 3 d l )  = 0. 

The conditions of existence and stability of this solution are rather complicated, and 
will be discussed for a particular set of the values of parameters. 
(iii) Travelling wave solution (T) : 

where r is a root of 

a; = - 3c, d;l a:, 

a3 - 9c2 c4 d;' - 3c, + 3c4 d ,  d; l -  d ,  ' 
2 -  3C1-k d ,  

The conditions of existence and stability of this solution are also complicated, and 
will be discussed for some examples of the values of parameters. It is seen at  a glance 
that cad,  < 0 is necessary for this solution to exist. 

We evaluated all the coefficients involved in ( 9 )  and (10) numerically and obtained 
the equilibrium solutions. The resultant bifurcation diagram is depicted for P = 7.0 
and R = 3000, in terms of wl, as the dashed line in figure 3. We find that the results 
from the cubic local equations agree well with those obtained from the Fourier 
truncation method not only qualitatively, but also quantitatively. The convergence 
of the amplitude expansion is very good, especially a t  small amplitude. 
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FIGURE 4. Branches of the equilibrium solution at R = 3000: P, pure mode; M, mixed mode; T, 
travelling wave. Modes without bracket are stable and the ones with [ ] are unstable. Modes with 
{ } are unstable travelling modes bifurcating into stable modulated waves through Hopf bifurcation, 
depending on the parameter. The dash-dotted line denotes the equilibrium solution obtained from 
(8). (a) P = ( b )  P = 0.05, (c) P = 0.1, ( d )  P = 0.12, (e) P = 0.7, (f) P = 10'. 



I 
FIQURE ~ ( U P C ) .  Phase diagrams of a stable modulated travelling wave solution for 

( a , P , R )  = (1.66, 10-4,3000). 

We show the bifurcation diagrams for P = 0.05, 0.1, 0.12, 0.7, and lo3 a t  
R = 3000 in figure 4 (a-f ). P, M, and T in these figures denote the pure mode, mixed 
mode, and travelling mode, respectively. Letters without bracket denote stable 
modes while letters bracketed by [ ] denote unstable modes and {T} denotes an 
unstable travelling wave which suffers from Hopf bifurcation and will be attracted 
by stable modulated waves depending on the value of the wavenumber. A typical 
modulated travelling wave is shown in figure 5 for (a,P,R) = (1.66, 3000). A 
travelling mode exists for P d 0.12 but not for P 2 0.13. We list the coefficients of (9) 
and (10) in the limit of P+O and P+oo in table 3. Bifurcation diagrams have 
asymptotic forms for P < loT3 and P > lo2. The asymptotic values of the equilibrium 
solutions for P < 1 are lo4 P times the equilibrium solutions for P = 

while the values for P B 1 are the same as those for P = lo3 if P > lo2. Bifurcation 
characteristics for a finite Prandtl number will also be inferred from the table. 

If the wavenumber a under consideration is much larger than the exactly 
resonating wavenumber a = a, (=  1.7232445), the third harmonic is subcritical so 
that the harmonic can only affect the temporal evolution of the fundamental mode 
in O(lA,15). In such a case, the dynamics of the disturbance is governed by the Landau 
equation (8) for monochromatic mode. It is expected that the solution described by 
(8) changes into solutions described by (9) and (10) smoothly as 01 J. u,. Dash-dotted 
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lines in figures 4 ( a ) ,  4(d ) ,  4 ( e ) ,  and 4(f)  denote the equilibrium amplitudes evaluated 
from (8). It is obvious that the solution of (8) smoothly changes into solutions of (9) 
and (10) for P > 0.7 while these solutions are not connected smoothly for P < 0.7. We 
guess that much higher-order nonlinear interactions should be taken into account in 
the analysis for P < 0.7 in order to obtain a smooth connection between these curves. 

4. Conclusion and discussion 
A higher harmonic resonance between the quasi-neutral fundamental mode and 

the third harmonic with even symmetries is demonstrated to exist in Rayleigh- 
BBnard convection. Support of two-dimensional primary roll solutions is shown 
to shrink substantially as a result of the resonance mechanism. The coupled 
amplitude equations for the fundamental and the third harmonic which describe the 
resonant interaction between them are derived and all the coefficients involved in the 
equations are determined numerically. Bifurcation diagrams of the solutions are 
depicted for different values of the Prandtl number. It is shown that the pure mode 
and mixed modes exist for relatively high-Prandtl-number fluids while the pure 
mode, mixed modes, travelling waves, and modulated waves exist for relatively low- 
Prandtl-number fluids. The mixed mode and travelling wave solutions have been 
obtained by Dangelmayr (1986) as solutions of the normal form in the presence of 
O(2)-symmetry. 

Let us now discuss physical significance of the new type of solution obtained in the 
present paper. The primary roll solutions with which Busse & Clever examined the 
secondary instabilities are correct. However, they examined only the stable 
equilibrium solutions (upper branch of the diagram for the equilibrium solutions) 
which consist of the pure mode and mixed mode solutions, although they did not 
distinguish between them. We have shown that there is another branch of the 
primary roll solutions, i.e. the unstable pure mode and unstable mixed mode 
solutions. The solutions can be observed experimentally for a certain period of time 
if a disturbance happens to  have a similar form to the unstable pure mode or mixed 
mode solutions. Since the secondary stability of the unstable primary solutions has 
not been examined yet, we cannot predict a final pattern of the unstable primary 
rolls for t +a. It might thus be insufficient to predict the bifurcation of the primary 
solutions only using Busse’s balloon although the balloon is correct as the stability 
boundary for stable and steady equilibrium rolls. The existence of the parameter 
region where the fundamental mode decays while the third harmonic survives as a 
stable pure mode leads changes the implications of Busse’s balloon. Take P = 7.0 and 
R = 6000 < R < 15000 for example. It is expected from Busse’s balloon that the roll 
with a = 1 will develop to an equilibrium one and that the roll is unstable to  cross- 
roll instability. According to  present results, the roll with a = 1 will decay before it 
attains to  its equilibrium state but excite the third harmonic which develops to  an 
equilibrium roll with a = 3. The roll with a = 3 is stable to any two- or three- 
dimensional disturbances, judging from Busse’s balloon. Our results therefore 
predict that  the roll with a = 1 develops eventually to the stable equilibrium one 
with a = 3. The stability of the travelling wave solutions has not been examined yet. 
It is not therefore confirmed whether if the solution is physically achievable. 

We obtained the bifurcation diagrams for the primary roll solutions in a horizontal 
layer with infinite extent. If the fluid is confined between horizontal plates with 
annular geometry and appropriate lateral circular boundaries, all the solutions 
obtained there will be free from the Eckhaus instability. The latter physical set-up 
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is therefore advantageous when we interpret the physical significance of the diagrams 
obtained. 

Now, we briefly describe a different class of strong nonlinear interaction between 
three even-symmetric modes, i.e. the fundamental, the second harmonic, and the 
third harmonic. Suppose that the fundamental and the third harmonic are in a 
resonant relation. The second harmonic with even symmetry is then in a supercritical 
state with a large linear growth rate. Actually, the mode is almost the fastest growing 
mode for the Rayleigh number considered there. The mode thus dominates the 
dynamics in a short timescale. We thus need to take account df the contribution of 
the second harmonic with even symmetry. We describe briefly a preliminary analysis 
in the Appendix. Complete analysis is possible only through the numerical calculation 
of the global bifurcation characteristics based on the Fourier truncation method and 
will be a subject of our future work. 

Finally, we mention an important different physical set-up : convection in a 
horizontal fluid layer between a rigid boundary and a stress-free boundary. As 
Armbruster (1987) has already pointed out, the spatial symmetry in the z-direction 
is broken from the beginning just as the case considered by Busse (1987). The 
dynamics is thus governed by coupled amplitude equations of the form 

where A ,  and A ,  are complex amplitude functions of the fundamental and the second 
harmonic, respectively. The equations have been investigated extensively for their 
bifurcation characteristics and dynamical responses by Dangelmayr (l986), 
Dangelmayr & Armbruster (1986), Knobloch & Proctor (1988), and Proctor & 
Hughes (1990) and we do not discuss them further in the present paper. 

Appendix. 1 : 2: 3 strong nonlinear interaction 
In the main body of the present paper, we excluded an even-symmetric second 

harmonic and pointed out that the 1 : 3 resonance takes place in Rayleigh-Be'nard 
convection. We consider in this Appendix the effect of the second harmonic as 
mentioned at  the end of $4. 

Let us select a parameter set in the neighbourhood of the exactly resonating one 
(a, R) = (1.7232445,2573.739) and imagine that the fundamental mode and the third 
harmonic are in quasi-neutral states, again. We then introduce the even-symmetric 
second harmonic. The harmonic can be regarded as the most unstable mode because 
the wavenumber of the second harmonic, 3.446, is quite close to the wavenumber 
amax of the most unstable mode : amax = 3.188 for (P,R) = 3000), 3.302 for (0.1, 
3000), 3.518 for (1,3000), or 3.632 for (1000,3000). The co-existence of these three 
even-symmetric modes is thus easily interpreted as the existence of the most 
unstable mode associated with its subharmonics. Global bifurcation characteristics 
for such a situation can only be obtained through the Fourier truncation method 
because the second harmonic is far from the linearly critical state. Here, however, we 
presume that the Rayleigh number under consideration, R 3 2574, is suficiently close 
to the critical value 1707.762, or more specifically, R - R ,  < R,, that a nonlinear 
interaction among these three modes can be regarded as a new class of nonlinear 
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resonance with wavenumber ratio 1 : 2 : 3. The amplitude equations for the latter case 
are then easily inferred as 

I dA 
dt 
1- - b1-41+b2 IA,12A1+ b3 IA2I2Al + b4 IA3I2A1+ b 5 A : 2 A 3 + b 6 A i A , * ,  

Derivation of (A 1)  in a rigorous fashion is impossible without utilizing the centre- 
unstable manifold reduction adopted in the analysis of the Kuramoto-Sivashinsky 
equation by Armbruster, Guckenheimer & Holmes (1989) which still needs further 
work for its mathematical justification if the parameter set is far from the bifurcation 
point. Instead, we assumed the form of (A 1 )  a priori and determined the numerical 
values of all the coefficients involved there based on the usual amplitude expansion 
technique. 

Set A,(t)  = a,(t)ei9n(t) (n = 1 , 2 ,  and 3), 0, = 8,-38,, and 0, = 28,-81-83. 
Then, added to  the possible solutions for 1 :3  resonance obtained in $3 (again, we 
refer the pure mode, the mixed mode, and the travelling wave obtained for the 1 :3  
resonance as P, M, and T, respectively), we obtain the following three new solutions : 
( a )  a pure mode solution (P2) : 

a, = a3 = 0,  a; = - c 1 / c 3 ;  

( b )  a mixed mode solution (M2): 

a; = -c ; ' (c1+c ,a~+c4a~+E,Ua,a3) ,  

0 1 -  -0 2 -  - 0 ;  0 1 -  -0 2 -  -n; 0 1 -  - O , B , = n ;  or O 1 = n , O 2 = O ,  

p ,  = b,-c;'b3c1, p ,  = b,-c;'b3c2, p ,  = b4-c;1(b3c4+66E5),  

p ,  = 6, -c i1(b3E5+6,c2) ,  p ,  = - c i 1 6 , c l r  p ,  = - c i 1 6 , c 4 ,  

where 

q1 = d , - c ; ld3c1 ,  9, = d,-c,'(d3c,+d,E5),  q3 = d4-c; 'd3c4 ,  

q4 = d 5 - c i 1 d 6 c , ,  q5 = - ~ i l d , ~ ~ ,  q, = -c i1(d3E5+d,c4) ,  

E5 = c, cos O,, g5 = b, cos 0,, 6, = b, cos 0,, d ,  = d ,  cos 0,, d", = d6 cos O,, 

and r satisfies 

(P6 q1-P5 93lr4 + ( P 6  q5+P3ql-Pl q3-P5 q6)r3+ (P3 q5 +P4qI-P196 -P5 q 2 ) r 2  

+ ( P 2  91 +P4 95 -P142- P ,  Q 4 h - f  (P2 45-Pl94) = 0 ;  

( c )  a travelling wave solution (T2) : 

ala,a3 =k 0, 0, =I= 0,  n ;  

It is impossible to give the explicit form of the travelling wave solution T2, so we 
adopted the Newton-Raphson method to calculate it by using random numbers for 
an initial guess of the numerical iteration. 

0, + 0, n. 
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We depicted typical bifurcation diagrams in figures 6 (a)  and 6 ( b )  for 1.4 d a d 2.0 
with R = 3000 a t  P = lop4 and 1000, respectively. We can conclude from these 
figures that all the mixed mode solutions M2 are unstable. The travelling wave 
solutions categorized as T2 are obtained only in a high-wavenumber range for 
P < 0 . 0 8 : ~  2 2.064 for P = lop4 and P = lop3, a 2 2.074 for P = a 2 2.090 for 
P = 0.02, a 2 2.146 for P = 0.04, a 2 2.257 for P = 0.06, and a 2 2.386 for P = 0.07. 
They are however found to be unstable. All the travelling wave solutions for the 
1 : 3  resonance (T) are also unstable according to (A 1). 

It is found that the pure mode solution P2 is always stable while the pure mode 
solution for 1 : 3 resonance (P) is partly stable. The mixed mode solutions for 1 : 3 
resonance, M, attain stability for a relatively high wavenumber and Prandtl number 
range as is shown in figure 7. If we superimpose the subharmonic with a = $amax onto 
the most unstable mode, then the nonlinear interaction between amax and 
+ama, modes generates the &h-harmonic with a = ;amax at the cubic order. If the 
amplitudes of the subharmonics are large enough, the nonlinear interaction between 
these two subharmonics will dominate the dynamics and the mixed mode solution 
(M) will be attained. Otherwise, the P2 solution will dominate the dynamics. 

The pure mode solutions P and P2 have been examined by Busse and his co-workers 
for their secondary instability. The physical realizability of the pure more solutions 
is thus governed by Busse's balloon. The P2 solution seems to be inside the balloon 
while the stable P solution will be outside for the R considered here. The stable mixed 
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P 
FIOURE 7. Stability boundary of the mixed mode M in the case of the 1 : 2 : 3  interaction. The 

mixed mode is stable above the boundary. 

mode solution for the 1 : 3 resonance (M), on the other hand, has not been examined 
yet for its secondary instability. If the mixed mode solution is stable to all the two- 
and three-dimensional disturbances, then the most unstable mode and the mixed 
mode can coexist. But before further discussing the physical significance of the stable 
mixed mode solution, we need to  analyse the global bifurcation as well as the 
secondary instability of 1 : 2 : 3 interaction systems by taking account of the even- 
symmetric mode with a x a,,,. 
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